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ABSTRACT 
 

In the present study, two new hybrid approaches are proposed for predicting peak ground 

acceleration (PGA) parameter. The proposed approaches are based on the combinations of 

Adaptive Neuro-Fuzzy System (ANFIS) with Genetic Algorithm (GA), and with Particle 

Swarm Optimization (PSO). In these approaches, the PSO and GA algorithms are employed 

to enhance the accuracy of ANFIS model. To develop hybrid models, a comprehensive 

database from Pacific Earthquake Engineering Research Center (PEER) are used to train and 

test the proposed models. Earthquake magnitude, earthquake source to site distance, average 

shear-wave velocity, and faulting mechanisms are used as predictive parameters. The 

performances of developed hybrid models (PSO-ANFIS-PSO and GA-ANFIS-GA) are 

compared with the ANFIS model and also the most common soft computing approaches 

available in the literature. According to the obtained results, three developed models can be 

effectively used to predict the PGA parameter, but the comparison of models shows that the 

PSO-ANFIS–PSO model provides better results. 
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1. INTRODUCTION 
 

Ground motion prediction equations (GMPEs) are used for the estimation of the ground 

motion parameters. Ground motion parameters are needed for the design and evaluation of 

important structures. The commonly used ground motion parameters in time domain are 

peak ground acceleration (PGA), peak ground velocity (PGV) and peak ground 
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displacement (PGD). In addition to the physical modeling and on-site investigation methods 

which are extensive, cumbersome and costly, GMPEs can be developed based on other two 

approaches: traditional regression analysis method and soft computing (SC) based methods. 

Both methods relate the ground motion parameters to some independent variables such as 

earthquake magnitude, source to site distance, site conditions, seismic wave propagation and 

earthquake source characteristics [1]. The first method represents a significant advancement 

in the state-of-the-art in empirical ground-motion modeling. And also in recent years the 

available ground motion databases have been greatly expanded. Attenuation relations 

developed in the Pacific Earthquake Engineering Research Center (PEER) in two phases, 

NGA-West1 [2, 3] and NGA-West2 [4], which are known as CB08 and CB14, respectively, 

are the most common predictive models among many others [5, 6]. The latter one have 

many advantages such as the ability in learning and generalizing interactions among many 

variables, and no need to assume an equation form. With the recent advances in the field of 

artificial intelligence and soft computing techniques, these methods have been considered 

for a suitable alternative in earthquake engineering prediction problems and also in peak 

time domain strong ground motion estimation problem. From the SC based prediction 

models one can refer to back propagation neural networks [7], artificial neural networks [8], 

hybrid model of genetic programming [9], hybrid model coupling of artificial neural 

network with simulated annealing [10], multi expression programming [11], a hybrid model 

of GP and SA [12], M5´ [13], support vector machine algorithms [14], and randomized 

ANFIS [1]. 

Peak time-domain strong ground motion parameters estimation problem is vital in 

earthquake engineering and risk assessment. Owing to the complex nature of the problem, 

accurate SC-based prediction models development is indispensable. The main objective of 

this paper is to predict the peak ground acceleration (PGA) parameter using two novel 

hybrid approaches. The proposed approaches are based on the combinations of Adaptive 

Neuro-Fuzzy System (ANFIS) with Genetic Algorithm (GA), and with Particle Swarm 

Optimization (PSO). Adaptive Neuro-Fuzzy Inference System (ANFIS) is one of the 

widely-used data mining methods that integrates both neural networks and fuzzy logic 

principles [15]. In these approaches, the PSO and GA algorithms are employed to enhance 

the accuracy of ANFIS model. In the hybrid approach, GA [16] and PSO [17] are used to 

optimize and tune the values of antecedent and consequent parameters of the ANFIS model. 

GA and PSO are the first developed evolutionary based and swarm based metaheuristics, 

respectively [18]. To develop hybrid models, a comprehensive database from Pacific 

Earthquake Engineering Research Center (PEER) are used to train and test the proposed 

models. Earthquake magnitude, earthquake source to site distance, average shear-wave 

velocity, and faulting mechanisms are used as predictive parameters. The performances of 

the developed hybrid models (PSO-ANFIS-PSO and GA-ANFIS-GA) are compared with 

the ANFIS model and also the most common soft computing approaches available in the 

literature. According to the obtained results, three developed models can be effectively used 

to predict the PGA parameter, but the comparison of models shows that the PSO-ANFIS–

PSO model provides better results. 

The remaining section of the paper are organized as follows. Section 2 presents the 

methodology of hybridizing ANFIS with GA and PSO after outlining ANFIS, PSO and GA. 

Section 3 develops three predictive models based on ANFIS, PSO-ANFIS-PSO and GA-
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ANFIS-GA. Results and discussions are made in Section 4. Concluding remarks are made in 

the last section. 

 
 

2. METHODOLOGY 
 

2.1 ANFIS 

Adaptive Neuro-Fuzzy Inference System (ANFIS) is one of the widely-used data mining 

methods that integrates both neural networks and fuzzy logic principles. The ANFIS method 

was introduce by Jang in 1993 [15]. The ANFIS architecture consists of five layer as shown 

in Fig. 1. The nodes of layers divided into fixed and adaptable types. The nodes of layers 1 

and 4 are adaptive while the nodes of layers 2, 3, and 5 are fixed. 

 

 
Figure 1. ANFIS architecture 

 

To explain the role of each layer, let consider the two fuzzy if-then rules as follows: 

 

1 1 1 1 1

2 2 2 2 2

Rule1:if  is  and  is  then 

Rule2:if  is  and  is  then 

x A y B f p x q y r

x A y B f p x q y r

  

  
 (1) 

 

where x and y are input variables, Ai and Bi are the fuzzy sets, f is the output, p, q, and r are 

the design parameters that should be determined during the training process of ANFIS 

algorithm. The function of each layer can be stated as follows: 

Layer 1: in this layer, each node i is represented by a membership function (i.e. Triangle, 

Trapezoidal, Gaussian, or generalized Bell function) as follows: 
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1, ( )ii A xO   (2) 

1, ( )ii B xO   (3) 

 

where Ai is the linguistic variable, x is the input to node i and O1,i is the membership function 

of Ai, which is usually defined by a Gaussian function as follows: 

 

 
2

( ) 2
exp( )

iA x

x c




 
  (4) 

 

where σ is the standard deviation and c is the center of the above Gaussian membership 

function. 

Layer 2: the firing strength of a rule is determined by the following product as: 

 

( ) ( ) ,    1,2
i ii A x B x i      (5) 

 

Layer 3: the firing strength of each rule is normalized by calculating the ratio of the ith 

rule’s firing strength to the sum of all rules’ firing strength. 

 

1 2

i
 




 (6) 

 

Layer 4: the conclusion part of fuzzy rules are calculated as follows: 

 

1 2

i
 




 (7) 

 

Layer 5: summing up all the outputs coming from Layer 4. 

 

2.2 GA 

Genetic algorithm is one of the firstly develped metaheuristic algorithms firstly presented by 

Holland in 1975 and is based on the genetic process of biological organisms [16]. Although 

idea of mimicking the evolotion in programming had been used by others (e.g. Evolutionary 

Strategies (ESs) and Genetic Programming (GP)), but recombination in addition to mutation 

and selection was firstly used in the GAs which is the key feature of them [19]. 

Genetic algorithms have three characteristic operators, namely selection, crossover and 

mutation. A potential solution to a problem may be represented as a set of parameters. These 

parameters (known as genes) are joined together to form a string of values (chromosome). In 

genetic terminology, the set of parameters represented by a particular chromosome is 

referred to as an individual. The fitness of an individual depends on its chromosome and is 

evaluated by the fitness function. During the reproductive phase, the individuals are selected 
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from the population and recombined, producing offspring, which comprise the next 

generation. Parents are randomly selected from the population using a scheme, which favors 

fitter individuals. Having selected two parents, their chromosomes are recombined, typically 

using mechanisms of crossover and mutation. Mutation is usually applied to some 

individuals, to guarantee population diversity [20]. 

 

2.3 PSO 

PSO is a population based metaheuristic algorithm developed by Kennedy and Eberhart [17] 

that simulates social behaviors of animals. Similar to other metaheuristic methods, PSO is 

initialized with a population of random designs, named particles, that are updated in each 

generation to search the optimum. Each particle is associated with a velocity vector 

adaptively changed in the optimization process. Particles move through the search space 

from their current positions with velocity vectors that are dynamically adjusted according to 

their current velocity, best self-experienced position and the best global-experienced 

position. PSO algorithm constitutes the simple conduct rules for search ability of each 

particle as follows: 

 
1 1

1

1 1 2 2( ) ( )

k k k

i i i

k k k k k k

i i i i g i

X X V

V V c r P X c r P X

 



 

    
 (8) 

 

The new position of particles Xi 
k+1 is obtained by adding the new velocity Vi 

k+1 to the 

current position Xi 
k. Vi 

k, Pi 
k and Pg 

k are previous velocity, the best position visited by each 

particle itself and the best solution the swarm has found so far, respectively.  is an inertia 

weight to control the influence of the previous velocity, r1 and r2 are two random 

numbers uniformly distributed in the range of (0, 1), and c1 and c2 are two learning 

factors which control the influence of the cognitive and social components [21]. 
 

2.4 ANFIS trained by PSO and GA 

In the ANFIS model, two types of parameters (i.e. antecedent and consequent parameters) 

are tuned by gradient-based methods such as Least Square Error (LSE) and Steep Descend 

Error (SDE). The answers of mentioned gradient-based method may stuck in the local 

optimum. Therefore, applying metaheuristic algorithms such as PSO or GA algorithms with 

random search nature can be considered as alternative and useful approaches. The 

antecedent parameters related to the membership functions, which can be optimized by the 

evolutionary algorithms, are {σi,ci}or ωi in Eq. (4). Each of these parameters contains N 

genes, where N is the number of membership functions. The consequent parameters 

{pi,qi,ri} in Eq. (7) can be also trained during the optimization algorithm. In the conclusion 

part, (I+1)×R genes generate each chromosome. The objective function of the used 

evolutionary algorithms is the root mean squared error (RMSE). 

To solve the mentioned optimization problem using PSO-ANFIS-PSO and GA-ANFIS-

GA, the weight ωi resulting from the fuzzy antecedent parameters as well as the linear 

parameters such as p, q, and r are tuned through PSO and GA algorithms. Fig. 2 illustrates 

the flow diagram of the proposed PSO–ANFIS–PSO and GA-ANFIS-GA models in which 
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the methodology of employing both embedded PSO and GA algorithms is described. 

 

 
Figure 2. ANFIS architecture 

 

 

3. MODEL DEVELOPMENT 
 

To develop new predictive model, a comprehensive database reported in Pacific Earthquake 

Engineering Research Center (PEER) is used. The PGA parameter is modelled in terms of 

four independent parameters including moment magnitude (Mw), closest distance to rupture 

(RClstD), style of faulting, and average shear-wave velocity over top 30 m of site (Vs30). 

According to Douglas [5], the following formulation is used to develop new model for PGA 

parameter as: 

 

 ,30( ) , ( ), ,sLn PGA f M Ln R V F  (9) 

 
where F stands for the style of faulting. Three different styles of faulting based on this 

parameter are determined by Campbell and Bozorgnia [3]. The values of this parameter for 

each type of faulting are as follows: reverse (dip slip with hanging-wall side up, F=1), 
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normal (dip slip with hanging-wall side down, F=2); and (3) strike-slip (horizontal slip, 

F=3). The schematic definition of each faulting type is shown in Fig. 3 (a). The percentage 

of each type of faulting is also shown in Fig. 3 (b). As shown, the reverse faulting is the 

main style of faulting in the database used. Furthermore, the boxplot of different predictive 

and output parameters is depicted in Fig. 4. This plot presents all possible scatter plots 

between input and output parameters one by one. The plots placed in the diagonal of this 

matrix are the histograms of input and output parameters for the whole database. As shown, 

the predictive variables covers a wide range of magnitudes and distances. 

 

 
 

(a) (b) 

Figure 3. Three different styles of faulting: (a) schematic definition, (b) percentage of each 

type 

 

 
Figure 4. Boxplot of different predictive and output parameters 
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A filtered database contains 2815 records is employed to develop evolutionary algorithms 

based on ANFIS, PSO, and GA methods. From the 2815 selected data points, 2252 (80%) 

data points were chosen as the training data, and the remaining 563 data points were used as 

the testing data to evaluate the model’s performance. After arrangement of datasets, the 

PSO-ANFIS-PSO and GA-ANFIS-GA are applied to estimate the PGA parameter. Table 1 

presents both employed PSO and GA algorithm parameters in which stopping criteria only 

meet the number of iterations. The PSO and GA parameters reported in the table are chosen 

based on the authors’ experiences within a trial-and-error process. Furthermore, Fig. 5 

shows the evolution of RMSE values for both hybrid models versus number of iterations in 

the estimation of PGA for the testing datasets. 

 
Table 1: PSO and GA algorithm parameters. 

Model 

PSO parameters  GA parameters 

Population Size 25  Population Size 25 

Maximum Number of Iterations 2000  Maximum Number of Iterations 2000 

Inertia Weight 1  Crossover Percentage 0.4 

Inertia Weight Damping Ratio 0.99  Mutation Percentage 0.7 

Personal Learning Coefficient 1  Mutation Rate 0.15 

Global Learning Coefficient 2  Selection Pressure 8 

­   Gamma 0.7 

 

 
Figure 5. Evolution of RMSE in both PSO–ANFIS–PSO and GA-ANFIS–GA models for 

testing dataset versus number of iterations in the estimation of PGA 

 

 

5. RESULTS AND DISCUSSIONS 
 

The results of ANFIS, GA-ANFIS-GA, and PSO-ANFIS-PSO are presented in this section. In 

this way, mean absolute error (MAE), root mean square error (RMSE), correlation coefficient 
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(R) can be defined to evaluate error indicators in the training and testing stages [22]: 

 

1

N

i i

i

P O

MAE
N








 
(10) 

 
2

1

1 N

i i

i

RMSE P O
N 

   (11) 

  

   

1

2 2

N

i m i m

i

i m i m

P P O O

R
P P O O



 


 


 (12) 

 

where Oi is the measured value, Pi stands for prediction values; N is the number of data 

points, Om is the mean value for observations and Pm is the mean value of predictions [23]. 

The statistical results of the developed ANFIS, GA-ANFIS-GA, and PSO-ANFIS-PSO 

for training and testing stages are presented in Table 2. For the training stages, it can be 

found that the PSO-ANFIS-PSO model produced more accurate performance (R= 0.85, 

RMSE=0.56, and MAE=0.44), compared to the other developed models. In the testing 

stages, the PSO-ANFIS-PSO network also predicts the PGA parameter with more accurate 

performance (R= 0.85, RMSE=0.60, and MAE=0.46), compared to the other developed 

models. For more illustration, scatter plots between predicted and the observed PGA values 

for both training and testing stages by the developed models are indicated in Figs. 6 (b) and 

(b), respectively. As shown, the scatter between observed and predicted PGA values by the 

PSO-ANFIS-PSO model is less than the other developed model for both training and testing 

datasets. It should be noted that the accuracy of the developed ANFIS and GA-ANFIS-GA 

models is also remarkable and the performance of GA-ANFIS-GA model is more accurate 

than the ANFIS model. 

 
Table 2: Results of performances for training and testing stages of developed models 

Method Subset MAE RMSE R 

ANFIS 
Training 0.5332 0.6810 0.7901 

Testing 0.5312 0.6697 0.8081 

GA-ANFIS-GA 
Training 0.4844 0.6086 0.8367 

Testing 0.4884 0.6132 0.8418 

PSO-ANFIS-PSO 
Training 0.4439 0.5686 0.8569 

Testing 0.4688 0.6061 0.8519 
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(a) (b) 

Figure 6. Scatter plots of observed and predicted PGA for (a) training (b) testing stages 

 

Furthermore, performance of the developed models is also compared with some well-

known soft computing based models including ANN-SA [10], GP [12], GP-SA [12], and 

M5´ [13] algorithms. The results of statistical error parameters related to the mentioned 

models besides the developed models are presented in Table 2 for the entire database. As 

shown, the developed PSO-ANFIS-PSO model outperforms the mentioned models in terms 

of accuracy. The performances of GA-ANFIS-GA and M5´ model are slightly the same, 

however, the GA-ANFIS-GA has better performance than the M5´ and the other previous 

models. In general, the evolutionary based models developed in this study shows better 

predictive ability than other soft computing based models. 

 
Table 2: the performance of different models. 

Model MAE RMSE R 

ANFIS (Present study) 0.5326 0.6776 0.7956 

GA-ANFIS-GA (Present study) 0.4856 0.6100 0.8382 

PSO-ANFIS-PSO (Present study) 0.4514 0.5801 0.8550 

M5´ [13] 0.4894 0.6214 0.8315 

ANN-SA [10] 0.5309 0.6782 0.7955 

GP-SA [12] 0.5596 0.6938 0.8191 

GP [12] 0.5390 0.6758 0.7981 

 

Kaveh et al. [13] stated that the errors of a predictive model should be independent of 

input variables for having a good predictive ability. Therefore, the ratios of the predicted 

PGA parameter to observed values for different developed models with respect to the F, Mw, 

Ln (R), and Vs,30 are shown in Fig. 7. As the scattering increases in this figure, the accuracy 

of the model will consequently decrease. It can be observed from these figures that the 

predictions obtained by the PSO-ANFIS-PSO model is more accurate with less significant 

trend with respect to the input parameters. It should be noted that the developed ANFIS and 

GA-ANFIS-GA models have also no significant trend with respect to the input variables. 
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Figure 7. The ratio between the predicted and observed PGA values with respect to input 

variables 

 

At final step, the most important parameters in prediction of the PGA parameter are 

determined by applying the gamma test (GT) analysis. In the GT analysis, the relationship 

between predictor and response variables can be detected without any need to generate a 

new predictive model. It estimates the minimum mean square error (MSE) that should be 

obtained by any smooth nonlinear function. More details about the GT analysis can be found 

in Kaveh et al. [24]. The most important parameters in GT analysis, which can be estimated, 

are gamma, gradient, standard error, and Vratio. To determine the most effective input 

parameters for predicting the PGA parameter, five scenarios are considered. In first scenario, 

all input parameters were considered in GT analysis. In next step, the input variables are 

excluded one by one from the dataset in the remaining scenarios and then a new GT analysis 

is done. The results of GT analysis related to each scenarios are illustrated in Fig. 8. 

In fact, removing each input variable from the analysis leads to change of GT parameters, 

which can be used to evaluate the importance of that excluded parameter. More changes in 

GT values indicate that the corresponding excluded parameter has more contribution in 

prediction of the PGA parameter. As shown in Fig. 7, the scenario 1, in which all input 

parameters are considered as effective parameters, has minimum values of GT parameters. 

According to this figure, removing Ln(R) leads to a significant increase in GT parameters; 

therefore, it can be concluded that this parameter is the most effective parameters in 

prediction of the PGA parameters. The Mw, Vs,30, and F parameters are the other important 

parameters, respectively. These observations are in line with the results of previous studies 

(e.g. [10, 13]). 
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Figure 8. The results of GT analysis 

 

 

4. CONCLUSION 
 

In the present study, two hybrid approaches based on ANFIS framework which optimized 

with PSO and GA algorithms, are proposed to predict the peak ground acceleration (PGA). 

Two type parameters related to structure of ANFIS model including antecedent and 

consequent parameters are tuned through searching mechanism of PSO and GA algorithms. 

The applications of the developed PSO-ANFIS-PSO and GA-ANFIS-GA in field of 

earthquake engineering are both novel and effective. A relatively big database from Pacific 

Earthquake Engineering Research Center (PEER) are applied to develop hybrid models. 

Four common predictive parameters including earthquake magnitude, earthquake source to 

site distance, average shear-wave velocity, and faulting mechanisms are considered. The 

performance analysis indicates that the PSO-ANFIS-PSO and GA-ANFIS-GA showed 

acceptable improvement in accuracy in comparison with the developed ANFIS model. 

Furthermore, the comparison between two developed hybrid models revealed that the PSO-

ANFIS–PSO model was more successful and produced more reliable predictions than the 

GA-ANFIS-GA model. The results of developed model are also compared with some 

common soft computing based models available in the literature. Results showed that the 

developed PSO-ANFIS-PSO outperforms the existing models. At final step, the most 

effective parameters in prediction of the PGA parameter are determined through the Gamma 

Test (GT) analysis. The Ln(R), Mw, Vs,30, and F parameters are the most important 

parameters in prediction of the PGA parameter, respectively. In general, the findings of this 

paper reveal that the hybrid algorithms such as PSO-ANFIS–PSO and GA-ANFIS–GA are 

efficient and useful techniques for PGA prediction. 
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